首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   71篇
  免费   13篇
  2023年   1篇
  2021年   4篇
  2020年   4篇
  2019年   2篇
  2018年   5篇
  2017年   3篇
  2016年   5篇
  2015年   4篇
  2014年   4篇
  2013年   3篇
  2012年   3篇
  2011年   3篇
  2009年   4篇
  2008年   2篇
  2007年   6篇
  2005年   1篇
  2004年   3篇
  2003年   3篇
  2002年   3篇
  2001年   1篇
  2000年   3篇
  1999年   4篇
  1998年   3篇
  1997年   2篇
  1996年   1篇
  1995年   1篇
  1993年   1篇
  1992年   1篇
  1990年   2篇
  1986年   2篇
排序方式: 共有84条查询结果,搜索用时 15 毫秒
61.
测定了采自上海海域的一头死亡须鲸骨骼样本的线粒体DNA(mtDNA)细胞色素b基因(Cyt b)序列330 bp(登录号MK295815)、细胞色素C氧化酶Ⅰ基因(COⅠ)序列206 bp(登录号MK317953)和控制区(control region)序列231 bp(登录号MK317954)。通过GenBank中的BLAST分析,结果表明,样本的上述三部分序列与大村鲸(Balaenoptera omurai)对应序列的相似性均达到100%,基于最大似然法(ML)法构建的系统发育树与BLAST结果一致,故将标本鉴定为大村鲸,为上海海域首次记录。  相似文献   
62.
Eyeballs from 121 fin whales (Balaenoptera physalus) and 83 harbor porpoises (Phocoena phocoena) were used for age estimation using the aspartic acid racemization (AAR) technique. The racemization rate (kAsp) for fin whales was established from 15 fetuses (age 0) and 15 adult whales where age was estimated by reading growth layer groups (GLGs) in the earplugs. The (kAsp) for harbor porpoises was derived from 15 porpoises (two calves and 13 > 1 yr old) age‐estimated by counting GLGs in the teeth and two calves classified to age based on length. The (kAsp) values were estimated by regression of GLGs against D/L ratios. For the fin whales an (kAsp) of 1.15 × 10?3/yr (SE ± 0.00005) and a D/L ratio at birth [(D/L)0] of 0.028 (SE ± 0.0012) were estimated, which is in agreement with rates for other mysticeti. For the harbor porpoises a (kAsp) of 3.10 × 10?3/yr (SE ± 0.0004) and a (D/L)0 value of 0.023 (SE ± 0.0018) were estimated, which is considerably higher than found for other cetaceans. Correlation between chosen age estimates from AAR and GLG counts indicated that AAR might be an alternative method for estimating age in marine mammals.  相似文献   
63.
  • 1 We summarize fin whale Balaenoptera physalus catch statistics, sighting data, mark recoveries and acoustics data. The annual cycle of most populations of fin whales had been thought to entail regular migrations between high‐latitude summer feeding grounds and lower‐latitude winter grounds. Here we present evidence of more complex and varied movement patterns.
  • 2 During summer, fin whales range from the Chukchi Sea south to 35 °N on the Sanriku coast of Honshu, to the Subarctic Boundary (ca. 42 °N) in the western and central Pacific, and to 32 °N off the coast of California. Catches show concentrations in seven areas which we refer to as ‘grounds’, representing productive feeding areas.
  • 3 During winter months, whales have been documented over a wide area from 60 °N south to 23 °N. Coastal whalers took them regularly in all winter months around Korea and Japan and they have been seen regularly in winter off southern California and northern Baja California. There are also numerous fin whale sightings and acoustic detections north of 40 °N during winter months. Calves are born during the winter, but there is little evidence for distinct calving areas.
  • 4 Whales implanted with Discovery‐type marks were killed in whaling operations, and location data from 198 marked whales demonstrate local site fidelity, consistent movements within and between the main summer grounds and long migrations from low‐latitude winter grounds to high‐latitude summer grounds.
  • 5 The distributional data agree with immunogenetic and marking findings which suggest that the migratory population segregates into at least two demes with separate winter mating grounds: a western ground off the coast of Asia and an eastern one off the American coast. Members of the two demes probably mingle in the Bering Sea/Aleutian Islands area.
  • 6 Prior research had suggested that there were at least two non‐migratory stocks of fin whale: one in the East China Sea and another in the Gulf of California. There is equivocal evidence for the existence of additional non‐migratory groups in the Sanriku‐Hokkaido area off Japan and possibly the northern Sea of Japan, but this is based on small sample sizes.
  相似文献   
64.
布氏鲸(Bryde’s whale)是广泛分布于温带和热带海域的一类中等体型须鲸,通常认为存在小布氏鲸(Balaenoptera edeni edeni)和布氏鲸(B. e. brydei)两个亚种。然而,有研究表明它们应该被划分为两个独立物种,即近岸小型布氏鲸(B. edeni)和远洋大型布氏鲸(B. brydei)。由于两者外部形态极其相似,并且存在同域分布现象,很难基于外观进行准确的物种鉴定。近年来,广西北部湾涠洲岛海域出现一个稳定的布氏鲸栖息种群,但目前尚不清楚属于哪种布氏鲸。研究采集了涠洲岛布氏鲸种群中两个体的粪便样品,从其中一份样品成功提取基因组DNA,并基于线粒体Cyt b和COΙ基因序列开展物种鉴定和遗传分析,鉴定结果为小布氏鲸。此外,还鉴定出涠洲岛海域同年死亡的一头须鲸也为小布氏鲸。据此推测涠洲岛水域栖息的布氏鲸种群可能是小布氏鲸。研究首次基于粪便样品,采用分子生物学技术,成功开展了活体布氏鲸的物种鉴定。这种基于非损伤采样的物种鉴定方法值得进一步优化并推广应用。  相似文献   
65.
Multivariate statistical analyses of 18 morphometric characters were performed in order to evaluate potential heterogeneity between predefined minke whale stock unit areas in the North Atlantic (West Greenland, Central, and Northeastern stocks). Results from principal component analyses suggested that the data cannot be regarded as random samples drawn from one uniform distribution. The overlap between groups was too substantial, however, to allow a firm conclusion concerning the question of isolated breeding stocks versus a large common breeding pool.  相似文献   
66.
The distribution of blue whales, Balaenoptera musculus , in the eastern tropical Pacific (ETP) was analyzed from 211 sightings of 355 whales recorded during research vessel sighting surveys or by biologists aboard fishing vessels. Over 90% of the sightings were made in just two areas: along Baja California, and in the vicinity of the Costa Rica Dome (a large, stationary eddy centered near 9°N, 89°W), with the rest made along the equator near the Galapagos islands, the coasts of Ecuador and northern Peru. All sightings occurred in relatively cool, upwelling-modified waters. Because these areas are the most productive parts of the ETP, and have relatively large standing stocks of euphausiids, it seems possible that blue whales select low latitude habitats which permit foraging. The waters off western Baja California were occupied seasonally, with a peak in sightings coinciding with the spring peak in upwelling and biological production. The Costa Rica Dome area was occupied year round, suggesting either a resident population, or that both northern and southern hemisphere whales visit, with temporal overlap. The modal group size was one for all areas and seasons, but the frequency of groups with two or more whales was significantly higher in sightings made near the Galapagos Islands and the coast of Ecuador and northern Peru.  相似文献   
67.
Passive acoustic data were collected January 2012 to April 2013 at four sites in the Chiloense Ecoregion (CER) in southern Chile (≈43°S–44°S, 71°W–73°W) and 1996–2002 from one site in the eastern tropical Pacific (ETP) (8°S, 95°W). Automatic detectors were used to detect the two songs (SEP1 and SEP2) described for southeast Pacific (SEP) blue whales. There was a strong seasonal pattern of occurrence of SEP songs in the CER from December to August, peaking March to May. In the ETP, the occurrence of songs was an order of magnitude lower but songs were present year‐round, with a peak around June. These findings support austral summer/autumn seasonal residency in the CER and a seasonal movement of blue whales towards the ETP during June/July, returning in December. Interannual differences in the ETP were possibly linked to the 1997–1998 El Niño event. At both study sites, SEP2 was significantly more common than SEP1; both songs largely followed the same temporal trends. These findings contribute to our understanding of the seasonal movements of endangered SEP blue whales and can inform conservation strategies, particularly in the CER coastal feeding ground. We recommend future year‐round passive acoustic studies in the CER and the ETP (e.g., near the Galapagos Islands), ideally coupled with oceanographic data.  相似文献   
68.
Many diving seabirds and marine mammals have been found to regularly exceed their theoretical aerobic dive limit (TADL). No animals have been found to dive for durations that are consistently shorter than their TADL. We attached time-depth recorders to 7 blue whales and 15 fin whales (family Balaenopteridae). The diving behavior of both species was similar, and we distinguished between foraging and traveling dives. Foraging dives in both species were deeper, longer in duration and distinguished by a series of vertical excursions where lunge feeding presumably occurred. Foraging blue whales lunged 2.4 (+/-1.13) times per dive, with a maximum of six times and average vertical excursion of 30.2 (+/-10.04) m. Foraging fin whales lunged 1.7 (+/-0.88) times per dive, with a maximum of eight times and average vertical excursion of 21.2 (+/-4.35) m. The maximum rate of ascent of lunges was higher than the maximum rate of descent in both species, indicating that feeding lunges occurred on ascent. Foraging dives were deeper and longer than non-feeding dives in both species. On average, blue whales dived to 140.0 (+/-46.01) m and 7.8 (+/-1.89) min when foraging, and 67.6 (+/-51.46) m and 4.9 (+/-2.53) min when not foraging. Fin whales dived to 97.9 (+/-32.59) m and 6.3 (+/-1.53) min when foraging and to 59.3 (+/-29.67) m and 4.2 (+/-1.67) min when not foraging. The longest dives recorded for both species, 14.7 min for blue whales and 16.9 min for fin whales, were considerably shorter than the TADL of 31.2 and 28.6 min, respectively. An allometric comparison of seven families diving to an average depth of 80-150 m showed a significant relationship between body mass and dive duration once Balaenopteridae whales, with a mean dive duration of 6.8 min, were excluded from the analysis. Thus, the short dive durations of blue whales and fin whales cannot be explained by the shallow distribution of their prey. We propose instead that short duration diving in large whales results from either: (1) dispersal behavior of prey; or (2) a high energetic cost of foraging.  相似文献   
69.
Blue whales (Balaenoptera musculus) were among the most intensively exploited species of whales in the world. As a consequence of this intense exploitation, blue whale sightings off the coast of Chile were uncommon by the end of the 20th century. In 2004, a feeding and nursing ground was reported in southern Chile (SCh). With the aim to investigate the genetic identity and relationship of these Chilean blue whales to those in other Southern Hemisphere areas, 60 biopsy samples were collected from blue whales in SCh between 2003 and 2009. These samples were genotyped at seven microsatellite loci and the mitochondrial control region was sequenced, allowing us to identify 52 individuals. To investigate the genetic identity of this suspected remnant population, we compared these 52 individuals to blue whales from Antarctica (ANT, n = 96), Northern Chile (NCh, n = 19) and the eastern tropical Pacific (ETP, n = 31). No significant differentiation in haplotype frequencies (mtDNA) or among genotypes (nDNA) was found between SCh, NCh and ETP, while significant differences were found between those three areas and Antarctica for both the mitochondrial and microsatellite analyses. Our results suggest at least two breeding population units or subspecies exist, which is also supported by other lines of evidence such as morphometrics and acoustics. The lack of differences detected between SCh/NCh/ETP areas supports the hypothesis that eastern South Pacific blue whales are using the ETP area as a possible breeding area. Considering the small population sizes previously reported for the SCh area, additional conservation measures and monitoring of this population should be developed and prioritized.  相似文献   
70.
Six years of passive acoustic monitoring data from the Gulf of California reveal seasonality and movements for the northeastern Pacific blue whales. Three sites were studied, one from the southern (Punta Pescadero) and two from the northern (Isla Tiburon and Canal de Ballenas) regions. A total of 4,953 h were analyzed, and 15,539 blue whale calls were detected, of which 2,723 (18%) were A calls, 11,249 were B calls (72%), and 1,567 were D calls (10%). A and B calls were produced both as song units (2,524) or AB singular calls (2,026). The high rate of songs and their seasonality suggest that the GC is a winter‐breeding ground. A shift from AB call predominance in winter, to D calls in spring and early summer, especially at the entrance of the GC, suggests the importance of this area for reproduction and foraging. Analysis of calling frequency suggests a clear movement of blue whales from the southern region (Punta Pescadero) to the northern regions (Canal de Ballenas and Isla Tiburon), with subsequent southern movement in March. The seasonality and mobility of blue whales in the Gulf of California, inferred from their calling, contributes to the ecological understanding of this population.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号